Fire hazards and risk mitigation strategies of alternative energy solutions

Noah Ryder, PhD, PE Fire & Risk Alliance, LLC.

Workshop Schedule – Day 2

9:45 am to 10:45 am - Introductions and small group work

10:45 am to 11:00 am – Break

11:00 am to 12:00 pm - Small group work continues

12:00 pm to 1:00 pm – Lunch

1:00 pm – reconvene in the main lecture room

1:00 pm to 2:00 pm - Workshop facilitators present findings (of their small groups)

Workshop / Group Activities (Day 2)

1 hour – Introductions and small group work

Facilitator introduces the "contemporary issue"
 Attendee introductions
 Case and Ecosystem discussion

15 min – Break

1 hour – Small group work continues

Facilitator records small group recommendations

1 hour – Lunch

Workshop / Group Goals (Day 2)

Introduce yourself to each other

(Current job, location, role(s) within the NFPA Ecosystem, why interested in this topic) Discuss the contemporary issue Identify challenges / recent failures Identify what elements of the NFPA Ecosystem may have been lacking (under-represented) in recent failures Identify ways the NFPA Ecosystem may help in the future

What is Alternative Energy?

Alternative Energy

Wind Energy • Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity.

Tidal Energy

• Tidal Stream Generator

Makes use of the kinetic energy of moving water to power turbines, in a similar way to wind turbines that use wind to power turbines.

• Tidal Barrage

Tidal barrages make use of the potential energy in the difference in height between high and low tides.

Wave Energy

- Ocean waves contain tremendous energy potential.
- Wave power devices extract energy from the surface motion of ocean waves or from pressure fluctuations below the surface.

Geothermal Energy

 (geo = earth and thermal = heat), geothermal energy comes from heat produced by the Earth.

• The two most common types of biofuels are **ethanol** and **biodiesel**.

Solar Energy

What's the Common Thread?

Energy Storage Not New

Energy Storage Technologies

BESS Information: Cell→System

Cell	Module	Unit	Lithium Battery System
Cell-level integration Cell testing and screening	Module-level integration Module testing	Unit-level integration Unit testing	Includes BMS, detection, suppression

Hazards

Fire
Explosion
Stranded Energy

Anatomy of an Event

MOORABOOL FIRE DESTROYS LITHIUM BATTERY

THE VICTORIAN BIG BATTERY PROVIDES 'CRUCIAL' ENERGY STORAGE

Challenges

- Inconsistent code adoption and varied interpretations/requirements
- Poorly written contracts & design
- Products not tested to latest standards (design cycles initiated prior to standard issuance)
- "One size fits all (most)" doesn't necessarily work if price is critical
- Lack of understanding/risks of systems by manufacturers, integrators, developers, FD, and yes, even FPE's
- Competing interests (supplier, owner/operator, AHJ, etc.)
- Appropriate design of safety systems

Types of Installations

Dedicated Use Building

Non-Dedicated Use Building

Outdoors Near Exposures

Outdoors Remote

BESS Roadmap & FPE Roles

Jurisdiction

• Applicable codes & standards

Facility Siting

- Setbacks
- Arrangement

Indoor vs. Outdoor

• Outdoor, remote vs near exposures

Technology Chosen

- Chemistry
- Vendor
- Arrangement

Protections Required

- Detection
- Alarm
- Suppression
- Active Ventilation (purge or NFPA 69)
- Deflagration Venting (NFPA 68)

Unit ESS Testing with Suppression Agent

Test Time	Event (ID)	
0:00:00 (0s)	Test Start	
0:40:00 (2400s)	Cell Failure Event	
0:42:22 (2556s)	Thermal Runaway (E0)	
0:43:12 (2592s)	Smoke Alarm (E1)	
0:43:18 (2598s)	Release Event	
0:44:45 (2685s)	Smoke Alarm (E2)	
0:45:26 (2726s)	FSS Discharge (E3)	
0:50:15 (3015s)	Ventilation $(E4)^*$	
0:51:54 (3114s)	Deflagration (E5)	
0:54:02 (3242s)	Test End	

