Thermogravimetric Analysis (TGA) & Differential Scanning Calorimetry (DSC)

Mark McKinnon Lab Test Methods Day 2014

6/25/2014

Background

BackgroundTGoverning Principles•Operational Procedure•Data Analysis•Limitations•Sensitivity Analysis•Tips for OperationD

Additional Information

Thermogravimetric Analysis (TGA)

- Test method capable of measuring the mass
 evolution of a milligram-scale sample.
- Gas atmosphere is well defined at all times during the experiment.
- The atmospheric temperature is well-defined and follows a pre-defined program.

Data Collected:

Mass of sample with respect to Time/Temperature.

Properties/Parameters Determined from Data:

Heterogeneous Reaction/Thermal Degradation Kinetics, Temperature Range for Pyrolysis

2

6/25/2014

Background

Background

Governing Principles

Operational Procedure

Data Analysis

Limitations

Sensitivity Analysis

Tips for Operation

Additional Information

Differential Scanning Calorimetry (DSC)

- Test method capable of measuring the heat flow
 rate to a milligram-scale sample.
- Gas atmosphere is well-defined at all times during the experiment.
- The atmospheric temperature is well-defined and follows a pre-defined program.

Data Collected:

Heat flow to sample with respect to Time/Temperature.

Properties/Parameters Determined from Data:

Heat Capacity, Enthalpy of Melting/Fusion, Enthalpy of Reaction/Thermal Degradation, Glass Transition Temperature.

Governing Principles

Background

Governing Principles

Operational Procedure

Data Analysis

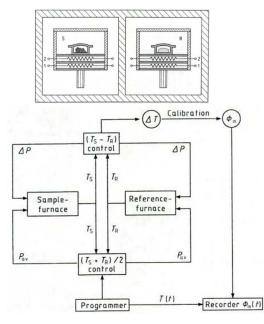
Limitations

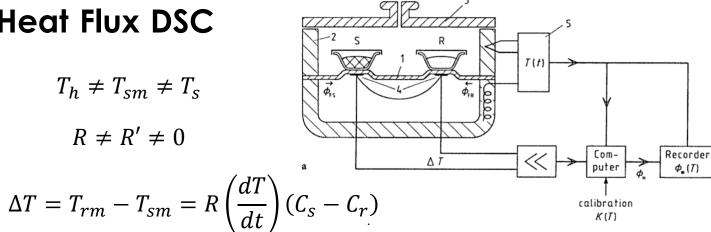
Sensitivity Analysis

Power Compensation DSC

Tips for Operation

Power is varied such that:


Heat Flux DSC


 $T_h \neq T_{sm} \neq T_s$

 $R \neq R' \neq 0$

$$T_{sm} = T_{rm} = T_h$$

$$R = 0$$
$$\Delta\left(\frac{dq}{dt}\right) = \left(\frac{dT}{dt}\right)(C_s - C_r)$$

Governing Principles

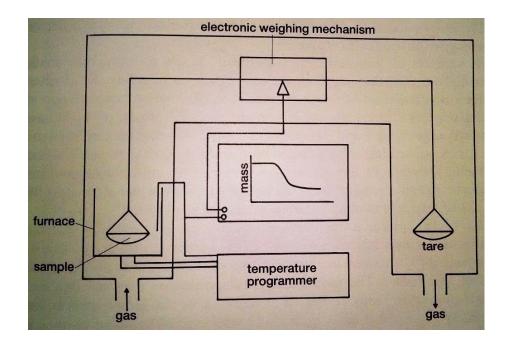
Background

Governing Principles

Operational Procedure

TGA

Data Analysis


Limitations

Sensitivity Analysis

Tips for Operation

Micro-thermobalance measures any changes in the mass of the sample, whether due to adsorption of oxygen, thermal degradation, oxidation, or other heterogeneous reactions.

Governing Principles

Background

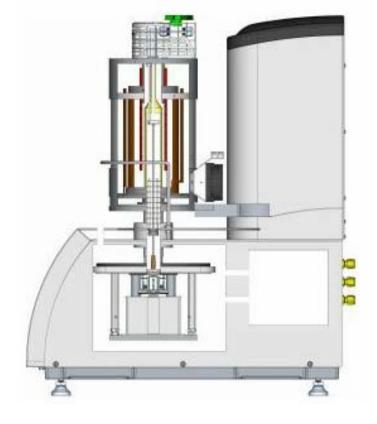
Governing Principles

Operational Procedure

Data Analysis

Limitations

Sensitivity Analysis


Tips for Operation

Additional Information

Netzsch Simultaneous Thermal Analyzer (STA)

Incorporates TGA and DSC to measure mass change and heat flow rate simultaneously.

Operational Procedure

Background

Governing Principles

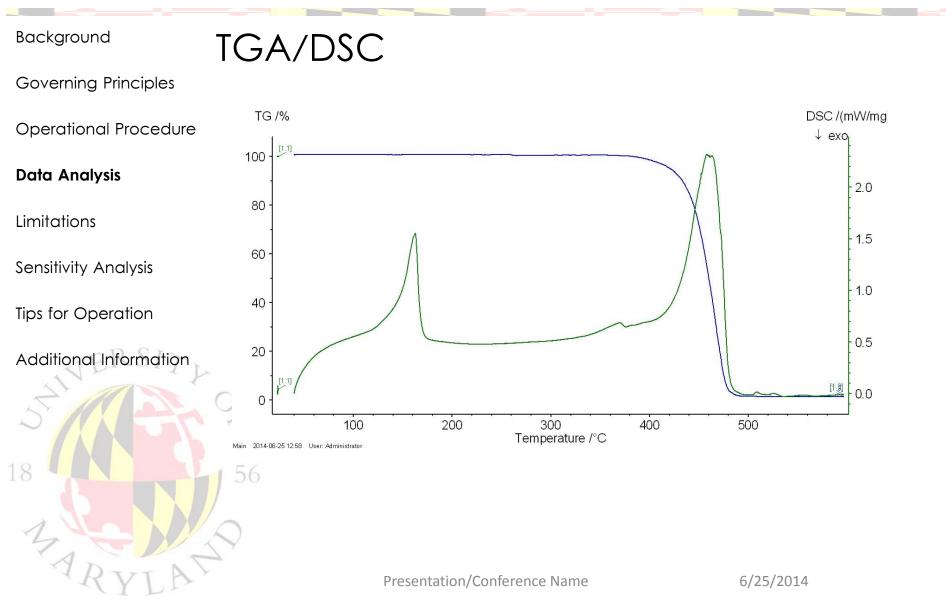
Operational Procedure

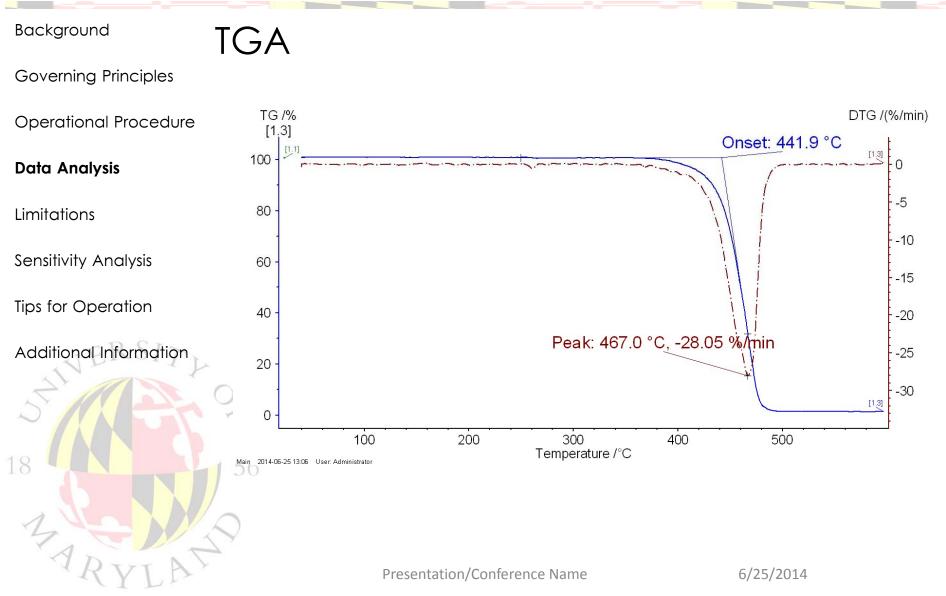
Data Analysis

Limitations

Sensitivity Analysis

Tips for Operation


Additional Information


TGA & DSC

- 1. Conduct baseline experiment with empty sample crucible along a pre-defined temperature program in a well-defined gas atmosphere.
- 2. Prepare sample crucible by evenly packing sample material into crucible and measure mass of entire crucible.
- 3. Conduct experiment with sample along the same temperature program in the same gas atmosphere as in the baseline experiment.
- 4. Allow furnace to cool and clean the sample crucible used in experiment.

Considerations:

Temperature, Heating Rate, Sample Size

9

Background	TGA
Governing Principles	A general homogeneous reaction is of the form:
Operational Procedure	$A \rightarrow B + C$ The rate of the reaction is assumed to be the product of a
Data Analysis	rate constant <i>k</i> and a function of the concentration of
Limitations	reactants and products. Where <i>k</i> is given by:
Sensitivity Analysis	$k = AT^m e^{-E/RT}$
Tips for Operation	A similar analysis can be applied to heterogeneous
Additional Information	reactions: $A(a) \rightarrow B(a) + C(a)$
STAND.	$A(s) \to B(s) + C(g)$
	Concentration does not hold the same meaning with
18	heterogeneous reactions, and degree of reaction or conversion is used:
3	$\alpha = (m_0 - m)/(m_0 - m_f)$
RYLAT	Presentation/Conference Name 6/25/2014

10

Background

TGA

Governing Principles

Operational Procedure

For constant heating rate measurements $(\Phi = \frac{dT}{dt})$: $d\alpha \quad (d\alpha) \quad (dt) \quad (1) \quad (d\alpha)$

Data Analysis

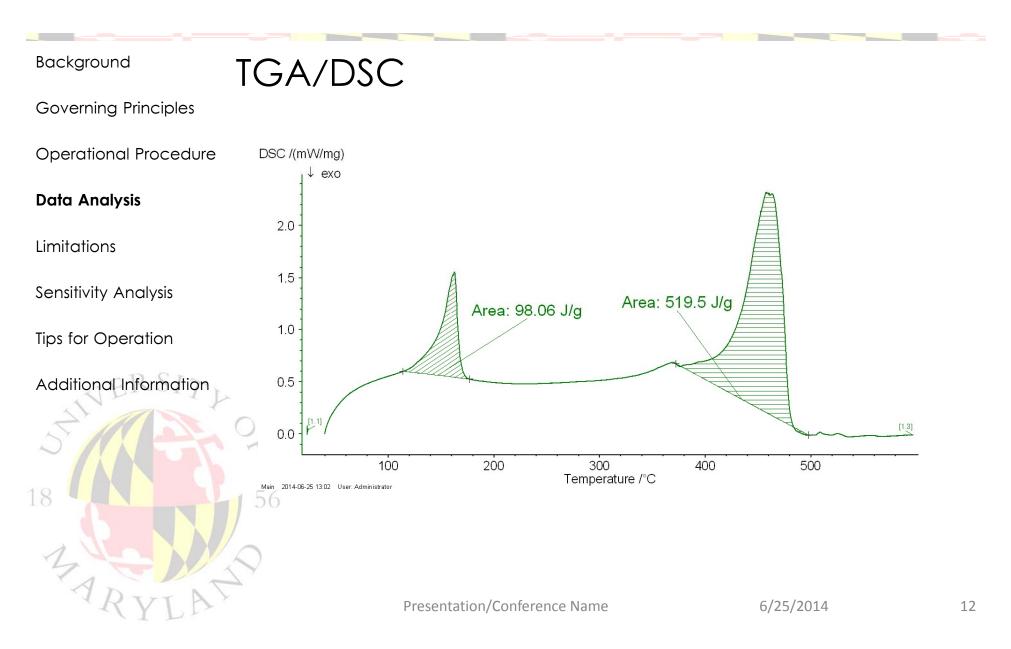
Limitations

Sensitivity Analysis

Tips for Operation

Additional Information Whe

Where:


$$\frac{d\alpha}{dT} = \left(\frac{d\alpha}{dt}\right) \left(\frac{dt}{dT}\right) = \left(\frac{1}{\Phi}\right) \left(\frac{d\alpha}{dt}\right)$$
$$\frac{d\alpha}{dT} = \left(\frac{1}{\Phi}\right) \left(\frac{d\alpha}{dt}\right) = \left(\frac{A}{\Phi}\right) e^{-\frac{E}{RT}} g(\alpha)$$
$$\int_{0}^{\alpha} \left(\frac{1}{g(\alpha)}\right) d\alpha = \int_{T_{0}}^{T} \left(\frac{A}{\Phi}\right) e^{-\frac{E}{RT}} dT = f(\alpha)$$

$$f(\alpha) = kt$$
 $g(\alpha) = \frac{1}{k} \frac{d\alpha}{dt}$

Many methods to determine A, E, and functional form of $f(\alpha)$ or $g(\alpha)$.

Presentation/Conference Name

6/25/2014

Background

DSC

Governing Principles

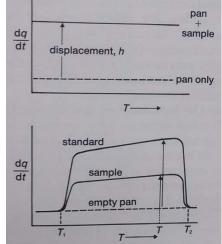
Operational Procedure

Thermal events in the sample manifest as deviations from the baseline, most likely as exothermic or endothermic peaks.

Data Analysis

Limitations

Sensitivity Analysis


Tips for Operation

Additional Information

$$\dot{q} = \Delta h_r - c_p \frac{dT}{dt}$$

Specific heat capacity is determined by comparing the heat flow rate curves yielded from the sample and a standard reference:

displacement =
$$B\Phi C_p$$

Limitations

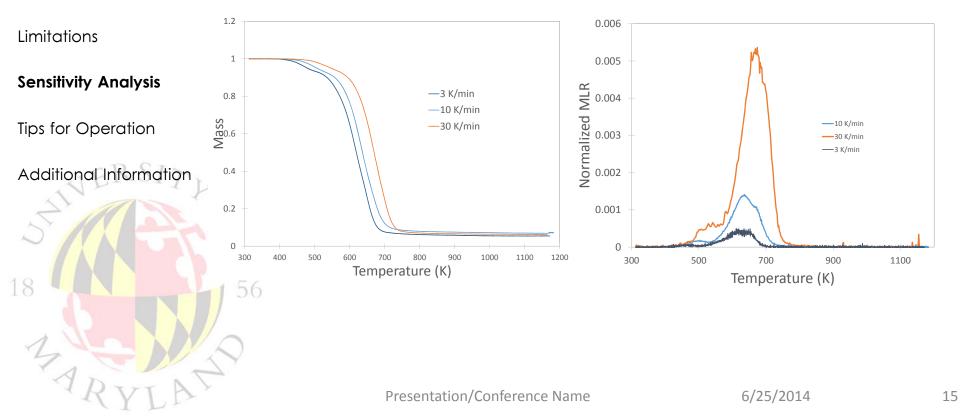
Background TGA **Governing Principles** OCCUrs. **Operational Procedure** Data Analysis • Limitations Sensitivity Analysis DSC Tips for Operation crucible. Additional Information

- Only provides meaningful data when a change in mass occurs.
- Some liquids can be measured, but this is generally very difficult to do.
- Very small samples are used, so non-homogeneous materials generally cannot be tested
- Very sensitive to any change in the sample or crucible.
 - Requires very good thermal contact with bottom of sample crucible
 - 5 Very sensitive to heating rate

Sensitivity Analysis

TGA and DSC are both sensitive to the

can result in shifts in the temperature.


heating rate and sample masses and either

Background

Governing Principles

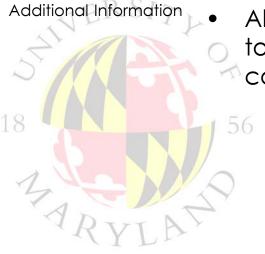
Operational Procedure

Data Analysis

Tips for Operation

Background

Governing Principles


Operational Procedure

Data Analysis

Limitations

Sensitivity Analysis

Tips for Operation

- Make sure sample and reference crucibles are perfectly clean prior to tests.
- For heat capacity determination make sure that orientation of sample and reference crucibles are consistent between all replicant tests.
- Make sure the crucible material will not react or interfere with the sample material and vice versa.
 - Always build in an isothermal period prior to linear heating to allow the sample to reach equilibrium with the furnace conditions.

Additional Information

Background

Governing Principles

Operational Procedure

Brown, Michael E. 1988. *Introduction to Thermal Analysis: Techniques and Applications*. New York, NY: Chapman and Hall

Data AnalysisHohne, Gunther, Hemminger, Wolfgang F., Flammersheim, H.J.
2003. Differential Scanning Calorimetry 2 ed. New York, NY:LimitationsSpringer

Sensitivity Analysis

Tips for Operation

Thank you! Questions?

