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Outline

ÁTemperature measurement ïThermocouples

ÁHeat Flux measurement ïHeat Flux gauge

üGardon gauge

üScmidthBoelter gauge

ÁWind speed measurement

üWind cup anemometer

üSonic anemometers

üPitot tubes

üHot wire anemometers

ÁHumidity measurement ïHygrometers
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Temperature measurements : 

Thermocouples
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Á The basis of thermocoupleswas establishedby

Thomas Johann Seebeck in 1821 when he

discoveredthat a conductorgeneratesa voltage

whensubjectedto a temperaturegradient.

Á To measurethis voltage,one must usea second

conductor material which generatesa different

voltageunderthe sametemperaturegradient. The

voltagedifferencegeneratedby the two materials

can then be measured and related to the

correspondingtemperaturegradient.

Á It is thusclearthat,basedon Seebeck'sprinciple,

thermocouplescan only measuretemperature

differences and need a known reference

temperatureto yield theabsolutereadings

Á Thermocouple is a relative not an absolute

temperature sensor. In other words, a

thermocouple requires a reference of known

temperature

The aboveformula is effective only if the reference

temperatureTRef in the experimentis kept the sameas

thereferencetemperaturespecifiedon thedatasheet.

The temperatureat the probetip canthenbe relatedto

thevoltageoutputas,
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Type Materials

Typical 

range (deg 

C)

Suitable environment Comments

T
Copper(Cu) vs 

Constantan
-270to 400

Vacuum, oxidizing, 

reducing, and inert 
High stability at sub zero and cryogenictemperatures

J
Iron (Fe) vs 

Constantan
-210 to 1200

Vacuum, oxidizing, 

reducing, and inert 

Heavier gauge wire is recommended for long term life 

above 540 degCsince Iron oxidizes at high temperatures

K Chromelvs Alumel -270 to 1370 Oxidizing or inert
Should notbe used in alternating reducing or oxidizing  

atmospheres

E
Chromelvs 

Constantan
-270 to 1000 Oxidizing or inert

Not recommended for alternating oxidizing or inert 

atmospheres

S (Pt-10% Rh) vs Pt -50 to 1768
Oxidizing or reducing Relatively strong.Stable calibration. Very accurate at 

high temperatures

B
(Pt-13% Rh) vs (Pt-

6% Rh)
0 to 1820

Oxidizing or reducing
Relatively strong.Stable calibration. Very accurate at 

high temperatures

R (Pt-13%Rh) vs Pt -50 to 1768
Oxidizing or reducing

Relatively strong.Stable calibration. Very accurate at 

high temperatures

N
(Ni-Cr-Si) vs (Ni-

Si-Mg)
-270 to 1300

Oxidizing, dry reducingor 

inert

Very reliable and accurate at high temperatures. Can 

replace type K thermocouples in manyapplications.
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An energy balance on the thermocouple takes 

the following form [1]:

For an unsteady system, it becomes

where

h

es
g=

(1)

(2)

(3)

For a steady system, it becomes

)( 44

surrbbg TT
kNu

d
TT -=-

se

Emissivity of Pt can be represented as a 

function of absolute temperature [2]

(4)

Appropriate Nusselt number correlation should be used to model the convectiveheat

transferaboutthethermocouple.

k

hd
Nu=

Here ódô represents the diameter of fine wire or thermocouple bead 

depending on whether Cylindrical or Spherical Nu assumption is used

Can be quantified precisely and accurately.
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For spherical bead approximation,

3
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Whitaker (1972) [4]

For Reynolds number between 0 and 200. Properties evaluated at 

(1)

(2)

380Pr71.0 << 76000Re5.3 <<

Propertiesevaluatedat . is the gas viscosity evaluatedat the surface

temperature

¤T

¤T sm

(3) 33.06.0

, PrRe37.02+=sphdNu [2]

For all Re and Pr numbers of interest in low flow velocities
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For cylinders, many Nusselt number correlations have been introduced,

(1) For the low Reynoldsnumbersapplicablefor fine-wire thermocouplemeasurementsin

combustionsystems,the Collis andWilliams (1959) [5] correlationis mostcommonly

used,

(2) Another widely quoted correlation is that due to Kramers (1946) [6]

(3) Andrews et. al. (1972) [7] evaluated the following expression for                                  ,
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With the Reynolds number evaluated at the so-called ñfilm temperatureò,
2

¤+=
TT

T b
m

2
1

3
1

2.0

, RePr57.0Pr42.0 dcyldNu += 10000Re01.0 <<

With the gas properties evaluated at 
2

¤+=
TT

T b
m

45.0

, Re65.034.0 dcyldNu +=
2

¤+=
TT

T b
mGas properties evaluated at

20Re02.0 <<



A. JAMES CLARK SCHOOL of ENGINEERING ƍUNIVERSITY of MARYLAND

Advantages :

üAccurateandreliable

üRobust

üLinearresponseoverawide temperaturerange

üCan be used in both reactive(combustingenvironments)and non-reactive

flows

Limitations :

ü Intrusivetechnique

ü Low frequencyresponse(typical frequencyresponseis lessthan 50 Hz for

fine wire thermocouples)

ü Losses(radiation,conduction)

ü Catalyticeffects
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Heat Flux Measurements : 

Heat Flux gauge
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Á Heat flux gauges are commonly used to measure heat flux 

Á 2 most commonly used heat flux gauge are : 

Gardon gauge 

Schmidt-Boelter

Á Gardongagesabsorbheatin a thin metalliccircular foil and

transferthe heatradially (parallel to the absorbingsurface)

to theheatsink weldedaroundtheperipheryof thefoil . The

emf output is generated by a single differential

thermocouplebetweenthe foil centertemperatureand foil

edgetemperature.

Á Schmidt-Boelter gagesabsorbthe heat at one surfaceand

transfer the heat in a direction normal to the absorbing

surface. The emf output is generatedby a multi junction

thermopile responding to the difference in temperature

betweenthesurfaceanda planebeneaththesurface.

Gardon heat flux gauge

Schmidt-Boelter heat 

flux gauge
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Schematic of a foil type (Gardon gauge) Heat Flux Gauge

Á Theconstantanfoil formstwo junctionswith copper,thefirst oneat its centerandthesecondoneat

its periphery

Á Under steadystate,the thermoelectricvoltageacrossthe copperleadsis a direct measureof the

temperaturedifferencesetup betweenthecenterandtheperipheryof theconstantandisk
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Á Heat balance for an annular element of the foil shown in 

figure alongside:

Heat gained by the foil element : 

Net heat conducted into the foil element :

Sum of these two should be zero. Cancelling the common 

terms we get,

The B.C.ôs are :

T is finite at r = 0  ;                 at r =R

With this the solution for the temperature is obtained as:
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Energy balance over a foil 

element in the form of an 

annular ring
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Á Equation(2) maybewrittenas:

Á In theabove is thetemperatureat thecenterof thedisk andthecoefficientK is

thegaugeconstantgivenby

Á The temperaturedifferencebetweenthe centerof the disk and the peripheryis the

output that appearsasa proportionalvoltage, , acrossthe terminalsof the

differentialthermocouple. Thereis thusa linearrelationshipbetweentheheatflux and

theoutputof theheatflux gauge.

Á Performingtransientanalysisfor the foil gaugein order to determinean expression

for time responseof thefoil gaugegivesus:
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VD
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4
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R: Foil radius

a: Thermal diffusivity of the foil material

(3)

Time constant
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Advantages :

üRobust

üLinearresponse

üCan be used in both reactive(combustingenvironments)and non-reactive

flows

üHeatflux is inferredfrom thetemperaturedifferencewith easeandsimplicity

Limitations :

ü Trade-off betweenfrequencyresponse(foil radius)andsensitivity

ü High frequencyheat flux gaugeare quite expensive(Vatell high frequency

HFG)

ü Needswaterfor cooling

ü Worksbestwhenradiationis thedominantmodeof heattransfer
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Wind speed measurements :

Anemometers




