Cone Calorimetry

Mark McKinnon Lab Test Methods Day 2014

6/25/2014

Background

Background

Governing Principles

Operational Procedure

Data Analysis

Limitations

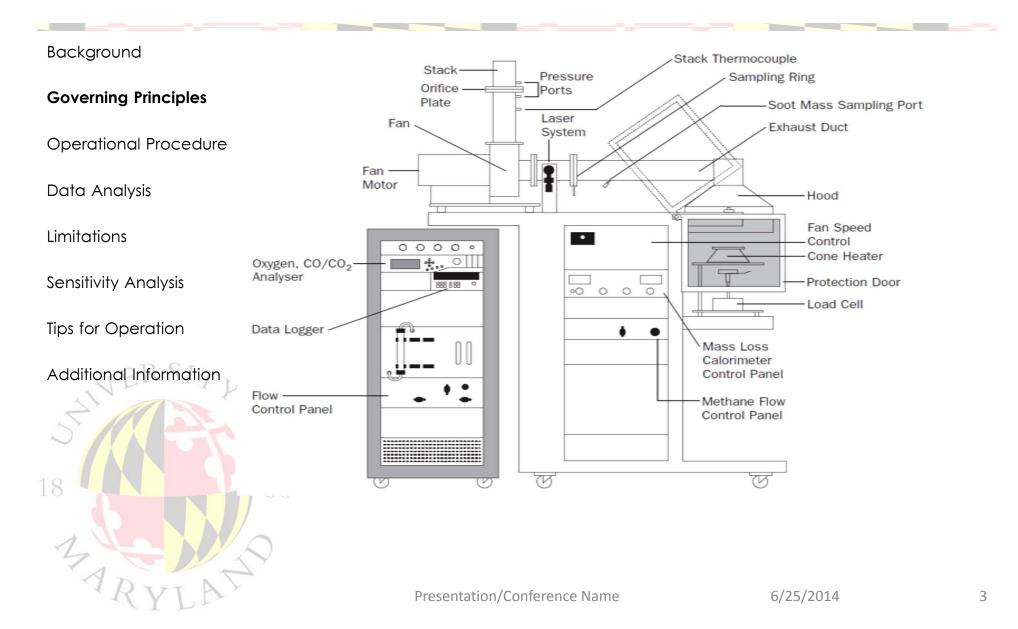
Sensitivity Analysis

Tips for Operation

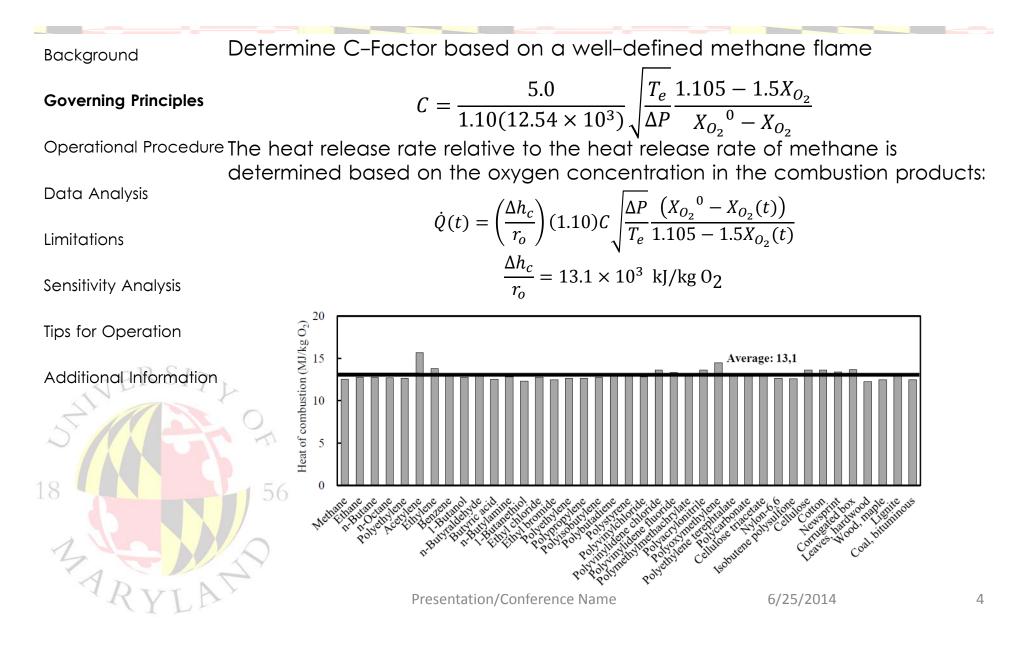
Additional Information

Cone Calorimetry

- Well-defined heat flux incident to one face of a flat sample with a truncated cone-shaped heater.
- Employs the principle of Oxygen Consumption Calorimetry.
- Mass Measured as the material burns.


Data Collected:

Mass of sample, composition of combustion products, time to ignition, extinction coefficient of smoke


Properties/Parameters Determined from Data:

Heat release rate, Burning rate, Effective heat of combustion, Thermal response parameter, Yields of combustion byproducts.

Governing Principles

Governing Principles

Governing Principles

Background

The effective heat of combustion is calculated based on the summation of the heat release rate and the change in mass from the beginning to the end of the test:

Operational Procedure

Governing Principles

Data Analysis

Limitations

Sensitivity Analysis

Tips for Operation

Additional Information

The beginning to the end of the test:

$$\Delta h_c = \frac{\sum_i \dot{q}_i (t) \Delta t}{m_i - m_f}$$

The extinction coefficient, *k*, of the combustion products (smoke) is calculated by measuring the attenuation of intensity of a laser projected through the combustion products. The Beer-Lambert law is used to calculate the extinction coefficient:

$$k = \left(\frac{1}{L}\right) \ln \frac{I_o}{I}$$

Presentation/Conference Name

Operational Procedure

Background

Data Analysis

Sensitivity Analysis

Tips for Operation

Additional Information

Limitations

Governing Principles

Operational Procedure

Calibration:

- Zero the difference between the pressure transducers in the stack
 - 2. Zero and calibrate the gas analyzer, watching for the oxygen level to achieve 20.95% when ambient air is tested.
 - 3. Calibrate the heat release rate measurement against a standard size methane flame (5 kW)
 - 4. Zero and calibrate the weighing system with a standard mass.
 - 5. Verify the zero point of the extinction coefficient.
 - Set the temperature of the heater such that the heat flux incident to a heat flux gauge at a distance from the heater equivalent to the distance from the heater to the sample surface is at the desired set point.

Operational Procedure

Background

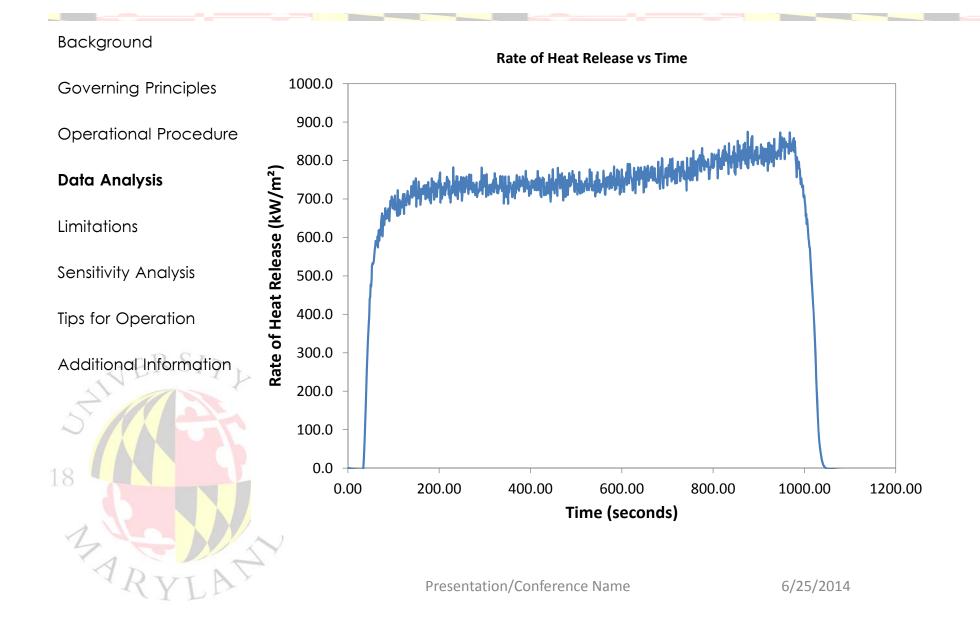
Data Analysis

Sensitivity Analysis

Tips for Operation

Additional Information

Limitations


Governing Principles

Operational Procedure

Testing:

- Insert the radiation shield and position the sample specimen.
 - 2. Position the spark igniter above the sample surface
 - 3. Remove the radiation shield and begin collecting data
 - 4. Record the time until the flame exists over most of the sample surface for at least 4 seconds
 - 5. Continue with the test until 2 minutes after any of the following occur:
 - 1. Flaming and other signs of combustion cease
 - 2. The average mass loss over a 1 minute period drops below 150 g/m^2
 - 3. The specimen mass returns to the pre-test value
 - 4. The heat release rate drops below 5 kW/m² for 10 minutes
 - 5. 60 minutes has elapsed

Data Analysis

Data Analysis

Background

Governing Principles

Operational Procedure

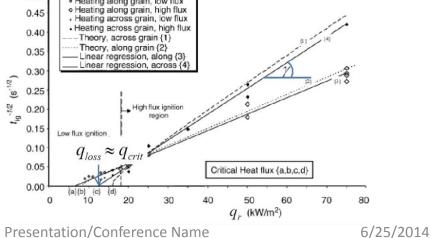
Data Analysis

Limitations

Sensitivity Analysis

Tips for Operation

Additional Information


An analysis of the time to ignition can yield the thermal response parameter and the critical heat flux for ignition.

$$t_{ig} = \frac{4}{\pi} k\rho c \frac{\left(T_p - T_i\right)^2}{\left(\epsilon q_r - \epsilon \sigma T^4 - h(T_s - T_i)\right)^2}$$

$$\frac{1}{\sqrt{t_{ig}}} = \sqrt{\frac{4}{\pi}} \frac{1}{\sqrt{k\rho c}(T_p - T_i)} \left(q_r''' - \dot{q}_{loss}''\right)$$

$$\frac{1}{\sqrt{t_{ig}}} = \sqrt{\frac{4}{\pi}} \frac{1}{\pi K} \left(q_r''' - \dot{q}_{loss}''\right)$$

$$\overset{0.50}{\sqrt{t_{ig}}} = \sqrt{\frac{4}{\pi K}} \frac{1}{\pi K} \left(q_r''' - \dot{q}_{loss}''\right)$$

9

Limitations

Background	In	the standard test, some lim	itations inclu	de:
Governing Principles	•	Significant intumescence prior to	o ignition will inte	erfere
Operational Procedure		with the spark igniter.		
Data Analysis	•	Any change in the geometry of changes the incident heat flux to	•	kes
Limitations	•	Samples generally must be flat.		
Sensitivity Analysis	•	• Explosive spalling or exfoliation of the sample will limit		
Tips for Operation		the validity of the test.		
	•	Significant melting and dripping while in the vertical		
Additional Information	×	orientation will yield unusable do	ata.	
5	OF			
.8	1 5	6		
3	2			
RYLA	ν.	Presentation/Conference Name	6/25/2014	10

Sensitivity Analysis

Background Governing Principles	It is essential that the oxygen concentration baseline is steady and consistently realistic.
Operational Procedure	The are corubbing chemicals (Drierite and Accarite) a
Data Analysis	The gas scrubbing chemicals (Drierite and Ascarite) can affect the results.
Limitations	

Non-uniformity of the heat flux incident to the sample can cause non-one-dimensional effects.

Additional Information

Sensitivity Analysis

Oxygen concentration is only slightly sensitive to the **exhaust flow rate**.

Tips for Operation

Background

Governing Principles

Operational Procedure

Data Analysis

Limitations

Sensitivity Analysis

Tips for Operation

Additional Information

• Always video record tests and make notes about observations of events during experiments.

- Make sure the gas analyzer is properly purged during calibration and reaches the proper ambient value and zero point.
- Make sure water is always running through the heat flux gauge when setting the heat flux and that the distance from the heater to the heat flux gauge is consistent with the distance from the heater to the sample surface.
- Allow the chiller, load cell, and methane mass flow controller sufficient time to heat up before operation.

Additional Information

Background

Governing Principles

Operational Procedure

Data Analysis

Limitations

Sensitivity Analysis

Tips for Operation

Additional Information

ASTM Standard E1354–11b, 2011. *Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using and Oxygen Consumption Calorimeter.* ASTM International. West Conshohocken, PA, 2011

Twilley, William H. and Babrauskas, Vytenis. *User's Guide for the Cone Calorimeter*. NBS Special Publication 745. Gaithersburg, MD, 1988.

Quintiere, James G. 2006. *Fundamentals of Fire Phenomena.* Hoboken, NJ: John Wiley & Sons, Ltd.

Thank You! Questions?

Presentation/Conference Name