Research Overview

Department of Fire Protection Engineering
University of Maryland
College Park, MD 20742, USA

http://www.fpe.umd.edu

November 2022
<table>
<thead>
<tr>
<th>Faculty</th>
<th>Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.E. Isman</td>
<td>fire suppression systems</td>
</tr>
<tr>
<td>J.A. Milke</td>
<td>suppression, detection, egress</td>
</tr>
<tr>
<td>S. Ni</td>
<td>structures, fire forensics, mass timber</td>
</tr>
<tr>
<td>F. Raffan-Montoya</td>
<td>toxicity, wildfire monitoring/forecasting</td>
</tr>
<tr>
<td>S.I. Stoliarov</td>
<td>pyrolysis, flammability, flame spread/growth</td>
</tr>
<tr>
<td>P.B. Sunderland</td>
<td>firebrands, soot, microgravity, cool flames</td>
</tr>
<tr>
<td>A. Trouvé</td>
<td>turbulent combustion, fire/wildfire modeling</td>
</tr>
</tbody>
</table>
Nuisance Alarms on Commercial Aircraft

- Faculty: J.A. Milke
- Students: S. Anthrathodyil
- Sponsor: FAA
- Title: “Detection of Signatures from Internal Contaminant Sources”
- Sponsor: FAA
- Objective: use an electronic nose to detect signatures/significant markers (e.g., certain classes of particulates and/or chemical species) from onboard equipment failures and identify signatures/markers that could potentially adversely affect other airplane systems or sensors due to masking a measurement or triggering a false warning.
Fire Detection and Artificial Intelligence

- **Faculty:** J.A. Milke and A. Trouvé
- **Students:** A. Davis
- **Title:** “Feasibility Analysis of Coupling FDS Modeling with Machine Learning for Situational Awareness in Aircraft Hangars”
- **Sponsor:** Battelle
- **Objective:** To provide information for incident commanders to understand the current environment and enable effective action. Real-time data can be collected from distributed fire and environmental sensors located in the affected space to identify the location and size of the fire and composition of the burning fuel.

Correctly identified 45 out of 56 fire locations within a 5 m radius

Correctly identified 85% of categories
- Cat. 1: 0-250 kW
- Cat. 2: 251-500 kW
- Cat. 3: 501-1000 kW
- Cat. 4: > 1000 kW

Correctly identified 91% of fuel composition (JP-8 vs other)
Water-Based Fire Suppression Systems

- **Faculty:** J.A. Milke and A. Trouvé
- **Students:** K. Steranka, K. Lee, S. Bradock, Y. Kim
- **Title:** Fire Suppression Alternatives for Protection of Aircraft Hangars
- **Sponsor:** Battelle
- **Objective:** To identify feasible design alternatives with water mist or sprinklers in lieu of foam to provide protection for aircraft hangars. The analysis is conducted via FDS simulations of liquid fuel spill fires.
Fire Risk in Low-Income Communities

- **Faculty**: J.A. Milke
- **Students**: G. Tan, 14 Sophomores in FPE, 6 high school interns
- **Title**: Fire Safety Challenges in Refugee Camps and Informal Settlements
- **Sponsor**: None
- **Objective**: To identify causes of disproportionate fire losses in vulnerable populations in refugee camps and informal settlements. Assist with identifying solutions to the significant fire safety challenges posed in these communities.
Fire Forensics

Fire Pattern Analysis

- **FPE Faculty:** S. Ni and S. Stoliarov
- **Ph.D. Students:** TBA
- **Collaborators:** P. Tang
- **Title:** Flame Design: Investigating the Impact of Architectural Finishes on Fire Patterns in Support of Developing Data-driven Tools for Pattern Analysis
- **Sponsor:** NIJ
- **Objectives:** Study the effects of architectural finishes on fire patterns, and use the resulting test data in combination with other data to develop data-driven tools for automatic and quantitative fire-pattern analysis.

Burn cells used in this project to investigate the impact of architectural finishes on fire patterns

Manual vs. algorithm classification of degree of fire damage (DOFD) to gypsum boards
Faculty: F. Raffan-Montoya

Title: Development of a methodology for the evaluation of fire retardancy of fabrics using the Milligram-scale Flame Calorimeter

Sponsor: U.S. Army DEVCOM Soldier Center

Collaborators: R. Nagarajan (Umass-Lowell), A.B. Morgan (University of Dayton Research Institute)

Objectives: Characterize flammability parameters and thermal response of fabrics using milligram-sized samples and compare data to bench scale tests (vertical flame spread, mannequin test)
Faculty: F. Raffan-Montoja, A. Trouvé

Title: High-Resolution Observations of Wildfires and Wildland-Urban-Interface Fires Through State-of-the-Art UAVs and Fire Imaging Technologies

Sponsor: TBD

Objectives: Characterize ember fluxes with camera system onboard UAV. Autonomously monitor wildfire location, perimeter, size.
Ignition of Building Materials by Firebrands

- **Faculty:** S. Stoliarov and P. Sunderland, in collaboration with A. Filkov, M. Gollner
- **Students:** J. De Beer (Ph.D.), S. Lee (Ph.D.), A. Lauterbach (M.S.)
- **Sponsor:** NIST and UL FSRI
- **Objective:** To determine the mechanism of ignition of representative building materials by firebrands and develop a model for this ignition process
Fire Toxicity

Characterization of Fire Effluent Composition

- **Faculty:** S. Stoliarov and F. Raffan-Montoya
- **Students:** F. Beygi (Ph.D.), S. Roy (M.S.)
- **Sponsor:** FAA and FM Global
- **Objective:** To develop an advanced version of the Fire Propagation Apparatus that enables controlled equivalence ratio fire experiments including time resolved measurements of O₂, CO, CO₂, soot, HCN, HCl, HBr, and total hydrocarbons
Development of Pyrolysis Model for Flexible PU Foam

- **Faculty**: S. Stoliarov
- **Students**: W. Saar (M.S.)
- **Sponsor**: NIST
- **Objective**: To measure properties that govern gaseous fuel production by standard flexible polyurethane foam used in upholstered furniture and develop a complete pyrolysis model for this material.

Controlled Atmosphere Pyrolysis Apparatus II at 60 kW m\(^{-2}\)
Microgravity Fire Dynamics

Flame Design

- **FPE Faculty**: P.B. Sunderland
- **Ph.D. Students**: K. Waddell, Z. Wang
- **Collaborators**: R.L. Axelbaum, D.L. Urban
- **Title**: Flame Design: A Novel Approach to Clean Efficient Diffusion Flames
- **Sponsor**: NASA Glenn
- **Objectives**: Study microgravity spherical flames aboard the ISS to identify the effects of radiation on soot, combustion chemistry, and extinction.
Microgravity Fire Dynamics

Spherical Cool Diffusion Flames

- **FPE Faculty**: P.B. Sunderland
- **Ph.D. Student**: K. Waddell
- **M.S. Student**: M. Kim
- **Collaborators**: R.L. Axelbaum, F.A. Williams
- **Title**: Spherical Cool Diffusion Flames Burning Gaseous Fuels
- **Sponsor**: NSF, with CASIS, and NASA
- **Objectives**: Observe cool diffusion flames in microgravity aboard the ISS using porous spherical burners.

Images of (a) a hot flame and (b) a cool diffusion flame on the International Space Station.
Microgravity Fire Dynamics

Burning Rate Emulator

- **FPE Faculty:** J.G. Quintiere, P.B. Sunderland, H.R. Baum
- **Ph.D. Students:** P. Dehghani, A. Markan
- **M.S. Students:** E. Auth, M. Bustamante, H. Kim, R. Venzon, A. Wright
- **Collaborator:** J. deRis
- **Title:** Experimental Investigation of Emulated Burning Rate at Various Gravity Levels
- **Sponsor:** NASA Glenn
- **Objectives:** Use gases to emulate condensed fuel fires in microgravity aboard the international space station.
FPE Faculty: P.B. Sunderland
MSE Faculty: O. Rabin
Ph.D. Student: K. McAfee
Title: Robust Heat-Flux Sensors for Coal-Fired Boiler Extreme Environments
Sponsor: DOE – NETL
Objectives: Develop novel heat flux gages that exploit the transverse Seebeck effect in rhodium single-crystal pellets.
Faculty: A. Trouvé – PhD student: M. Ahmed

Title: “Towards a Collaborative Research Infrastructure for Fundamental Studies of Turbulent Fire Phenomena”

Sponsor: NSF

Objective: Build a collaborative framework (through a series of workshops) around the topic of the experimental validation of computer-based fire models.

High-resolution FireFOAM simulation of a methanol pool flame
Test of FDS accuracy in simulations of the radiation load on a planar surface located at different separation distances H from a source.
Faculty: A. Trouvé – PhD student: M. Ahmed
Title: “Large Eddy Simulation of Flame Spread in Wildland Fires”
Sponsor: USDA Forest Service
Collaborators: M. Finney, J. Forthofer (US Forest Service)
Objective: Develop a state-of-the-art computational modeling capability that simulates wildland fire behavior at vegetation and flame scales. Perform detailed numerical simulations of wildland fire behavior with a high-resolution description of flame spread, heat release and fuel consumption.

OpenFOAM simulation of flame spread across a biomass vegetation bed treated as a population of distributed particles

Simulations of drying, pyrolysis and char oxidation for a single particle representing biomass vegetation

- MIR (g/m³/s)
- Time (s)
- Temperature (K)
- Position (m)
WUI Fires

Regional-Scale Modeling of Wildland/WUI Fire Spread

- **Faculty:** A. Trouvé – **PhD student:** Y. Qin
- **Title:** “PREEVENTS Track 2: Fire Spread at the Wildland-Urban Interface (WUI) Modeling and Data Assimilation for Prediction and Risk assessment (WUI MAPR)”
- **Sponsor:** NSF
- **Collaborators:** E. Ellicott, K. Ide (UMD), M. Gollner (UCB), C. Lautenberger (Reax Engineering)
- **Objective:** Extend modeling capabilities of current wildland fire spread models to the cases of WUI fire spread and wildland/WUI fire spread due to firebrands (Solver: ELMFIRE, developed by Reax Engineering Inc.)