Applicant Requirements:
The Combustion and Reacting Transport Section (Code 6185) is seeking independent, self-motivated US citizens with pending undergraduate or graduate degrees in fire protection engineering, chemical engineering, mechanical engineering, chemistry, physics, optics, or a closely related field are invited to apply for a research position to apply for student intern positions.

Particular areas of interests include the following:

- Cone Calorimetry
- Fire Suppression Foams
- LabView

The Naval Research Laboratory is dedicated to advancing basic and applied research with emphasis on topics relevant to naval operations. The Combustion and Reaction Transport Section is conducting fundamental and advanced research in combustion power, fire suppression, and oil spill remediation.

Undergraduate applicants need to have a background in laboratory and/or computational research, the ability to work in a team environment, excellent oral and written communication skills. Ambitious candidates with experience in single and multi-phase (foam, spray, particulate, gaseous) flow, combustion phenomena and fire suppression, optical diagnostics, CFD and reactive multi-phase flow simulations, chemical kinetics, instrumentation development, data interpretation, laboratory and practical-scale experimental development are desired. Script-driven processing, algorithm implementation, and analytical development from mathematical theory of fundamental combustion phenomena, model development, validation, and refinement experience is needed for computational candidates. Hands-on experience in a shop, laboratory, and/or field setting with working knowledge of digital data acquisition, basic electronics, prototype design and fabrication, and processing systems would be beneficial.

The applicant will work with an R&D team on a variety of programs, implement new experimental designs, coordinate laboratory personnel, and interface with the Department of Defense and other government and non-government entities to develop new avenues of research. State-of-the-art instrumentation and infrastructure are available.

Contact:
Dr. Steven Tuttle
Combustion Dynamics and Modeling Section, 6185
Navy Technology Center for Safety and Survivability, 6180
US Naval Research Laboratory
Washington, DC 20375
(202) 767-0810
Steven.Tuttle@nrl.navy.mil